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1 What is Quantisation: The Dirac Axioms

Given a particular model for classical mechanics and a particular model of quantum mechanics
(including fields), how can we build a quantum mechanical system on top of a classical system?

Most well-studied case is the canonical quantization, in 1D

q 7−→ q̂

p 7−→ −iℏ ∂
∂q
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Importantly, these operators obey
[q̂, p̂] = iℏ.

This is quantisation of the simplest dynamical quantities, for which Dirac wrote down a generalisation
of in 1925 (see [Dir25] and [Dir81] for the general case).

Definition 1 (Dirac Conditions). Given a classical mechanics supporting the notion of an observable1

f of phase space M (i.e. a smooth f : M → R, where F = C∞(M) are smooth functions) and a
quantum mechanics given by operators O on a (Hilbert) space of wavefunctions H, a quantisation Q
is a map

Q : C∞(M) := F → O(H) : f 7−→ Q(f) = f̂ ,

where canonical transformations of the classical theory are mapped onto unitary transformations of
the quantum theory. Such a map Q is said to be Dirac if it obeys the following conditions:

1. f 7→ f̂ is linear

2. Q maps constants to constants, i.e. r = r̂ ∀r ∈ R

3. Poisson brackets are mapped to commutators: [f̂ , ĝ] = iℏQ({f, g}) ∀f, g ∈ C∞(M)

Recall that
{A,B} =

∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi

and so a partially evaluated Poisson bracket behaves like a vector field.

Things to note about the Dirac quantisation are that it is very symmetry focused, it appears
local2. There are other kinds of quantization, usually with conditions on operator ordering, e.g. Weyl,
Wick and Anti-Wick.

Our goal is to show the problems and processes involved in extending canonical quantisation to
curved and topologically nontrivial spaces. This is the theory of Geometric Quantisation

The quantisation scheme we will discuss does not have any operator ordering specification

There is a famous theorem which strongly limits the Dirac quantization, see [Got99] for the full
argument.

Theorem 1. There is no Dirac quantisation of arbitrary polynomials in x and p.

Proof. Lifted from [Hal13] theorem 13.3. The polynomial q2p2 has multiple representations

q2p2 =
1

9
{q3,p3} =

1

3
{q2p, qp2}

=⇒ iℏQ
(
q2p2

)
=

1

9
[Q

(
q3
)
,Q

(
p3
)
] =

1

3
[Q

(
q2p

)
, Q

(
qp2

)
]

=⇒ iℏQ
(
q2p2

)
= −2

3
(−iℏ)3 = −1

3
(−iℏ)3

1A smooth dynamical quantity we can evaluate along a trajectory
2quantum mechanics will be determined at most by the dynamics in the neighbourhood of the corresponding point

in classical phase space
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(a) (b) (c) (d)

Figure 1: Examples of Hamiltonian vector fields XH for (a) the SHO, (b) the Berry-Keating
Hamiltonian, (c) the inverted SHO and (d) the simple pendulum.

One can avoid running into the GVH theorem by restringing the set of classical observables to
be quantised to certain well-behaved Lie subalgebras of observables.

We want to undertake the challenge of quantisation, building everything up from the classical
phase space, only introducing additional structure when it is necessary to do so.

2 The Euclidean Kostant-Souriau Prequantum Operator

Let us take for the moment our working space of wavefunctions to be square-integrable functions
over phase space

We now need a way to lift observables from classical phase space to operators on these wavefunc-
tions. One way to do this is using the so-called pre-quantum operator. See the canonical reference by
Woodhouse [Woo92] for a fuller discussion.

Definition 2. Let f,H ∈ C∞(M), the Hamiltonian vector field associated with f is written Xf

and is given by (depending on sign conventions) by a variety of expressions

XH(f) = {H, f} = ω(Xf , XH) =
df

dt

Vector fields have commutation relations given by the Lie derivative, for X,Y vector fields and a
smooth function f this is

[X,Y ](f) = X(Y (f))− Y (X(f)) = LXY (f),

so why not just lift the vector fields straight away?

In particular we can show that
[Xf , Xg] = X{f,g}

and so the objects
f̂ = iℏXf

which commutes like
[f̂ , ĝ] = [iℏXf , iℏXg] = (iℏ) (iℏXf,g) .
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This appears to work well but does not satisfy our requirement of constants being mapped to
multiplication operators, which is important for the behaviour of eigenvalues in the reduced phase
space picture.

A simple extension of our previous map that fixes this could be

f̂ = iℏXf + f

but this destroys the commutation property since

[f̂ , ĝ] = [iℏXf + f, iℏXg + g] = (iℏ)2
(
X{f,g} + [Xf , g] + [f,Xg] + [f, g]

)
= iℏ (iℏXf,g)

and
Q({f, g}) = iℏX{f,g} + {f, g}

so
[f̂ , ĝ] ̸= iℏQ ({f, g}) ,

we are missing a factor of iℏ{f, g}.

We can introduce a third and final term into our definition of Q designed to get rid of this Poisson
bracket. Recalling that in terms of the symplectic form ω = dp∧ dq we can write the Poisson bracket
as

{f, g} = ω(Xg, Xf ),

we pick a potential for ω, i.e. a 1-form θ such that dθ = ω, for example θ = pdq or θ = 1
2(pdq − qdp).

Then we can define
f̂ = iℏ

(
Xf − i

ℏ
θ(Xf )

)
︸ ︷︷ ︸
Covariant Derivative

+ f︸︷︷︸
Constant

where we claim these two terms together constitute a covariant derivative, which we give the notation

f̂ = iℏ∇Xf
+ f.

The commutator property can then be shown

[f̂ , ĝ] = [iℏ∇Xf
+ f, iℏ∇Xg + g]

= (iℏ)2∇X{f,g} + iℏ{f, g}

which is consistent with
iℏQ({f, g}) = iℏ

(
iℏ∇X{f,g} + {f, g}

)
and so the covariant derivative-like object

Q(f) = iℏ∇Xf
+ f

seems to give a Dirac quantisation, but we know that there will be problems with the order of
functions we can plug into it, or equivalently, the irreducibly of the resulting operators.

There is a U(1) gauge freedom in defining ∇ that allows us some degree of control over the form
of the wavefunctions.
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2.1 Prequantum Harmonic Oscillator

We have
H =

1

2
(p2 + q2)

and compute
XH = q∂p − p∂q

and so
Ĥ = iℏ(q∂p − p∂q)

which has eigenvalues
ψn = f

(√
q2 + p2

)
e−in arctan p/q,

best viewed in cylindrical coordinates where f is a square integral function and n ∈ Z is the eigenvalue.

We get the spectrum spacing roughly correct (no zero point energy) but the eigenfunctions are
too loosely defined. In particular our eigenfunctions are functions of q and p, when we would expect
them to be only functions of q or p separately.

2.2 Curvature in the space of wavefunctions

A more interesting topological note comes from the identifying of a covariant derivative in the
construction of the prequantum operator. Computing

curv(∇)(X,Y ) = [∇X ,∇Y ]−∇[X,Y ] = − i

ℏ
ω(X,Y )

we find that our connection has curvature! So there is a possibility for our quantisation procedure
to be topologically nontrivial!.

The fact that our wavefunctions depend on all variables on phase space is itself a very intriguing
problem. In standard formalism it is solved by introducing a technical object called a polarization,
which is the subject of much modern research.

2.3 Towards a full quantisation

• Describe the process of polarising

• Pairing maps between polarisations

•

3 The Topology of Phase Space: Where do the wavefunctions live?

We are most used to doing quantum mechanics over flat phase spaces. Generally speaking we should
be prepared to do quantum mechanics on the tangent space of whatever arbitrary configuration
space we confine out particle to, for example:

Q = Euclidean Space Phase Space−−−−−−−−−→ T ∗Rn Q = Sphere Space Phase Space−−−−−−−−−→ T ∗S2
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Geometry is important when doing quantum mechanics even for flat phase spaces, as imposing
constraints (selecting an eigenvalue) is often equivalent to localising phase space flows to some curved
submanifold of the full phase space, often with a nontrvial topology. We will now explore how these
considerations affect our ability to build wavefunctions

On spaces with nontrivial topology one typically looses the ability to speak of "functions" global
objects. This is a consequence of the fact that we need more than 1 coordinate system to describe such
spaces and so objects called transition functions introduce an extra degree of freedom in constructing
our space of functions. The tools used to do this are called vector bundles and we will describe them
below.

Definition 3. A d-dimensional smooth manifold M is a space where around each point p ∈M I can
find a neighbourhood of p, i.e. some p ∈ U ⊆M , such that U ∼= Rd - we say M is locally Euclidean.
Such a neighbourhood U ⊆M and the function Φ : U → Rn is called a coordinate chart. The function
Φ is called a local trivialisation3

All the coordinate system on flat space (Cartesian, Cylindrical, Elliptic, ect.) can then be pulled
back to patches on the manifold. For example, any point in Rn is in the neighbourhood of a global
Cartesian coordinate system.

To put coordinates on the sphere one needs to split it into two hemispheres, H↑ and H↓ with
local trivialisations

Φ↑ : H↑ → R2

and
Φ↓ : H↓ → R2

respectively, then make sure that wherever they overlap the change-of-variables (transition functions)
are smooth, in the case of the sphere we want

Φ↓ ◦ (Φ↑)−1 : R2|overlap → H↑ ∩H↓ ∼= S1 → R2|overlap

and the corresponding inverse to be smooth bijections.

Definition 4. A rank k vector bundle over a manifold M is a collection (E,M, π) of three pieces
of information. E is called the total space, M is called the base space and π : E →M is called the
fiber-wise projection. The bundle places the structure of the vector space Rk above each point in the
base space (called the fiber), i.e. π−1(p) ∼= Rk for all p ∈ M . Every local trivialisation of U ⊂ M
induces a local trivialisation of the bundle, for example ΦU : U × Rk → π−1(U)

If a manifold is a space which at any point looks locally like U ∼= Rn, then a rank k vector bundle
E is a space which at every point looks locally like U × Rk.

If we have a rank 1 vector bundle over a manifold M , then the fiber R ∼= π−1(p) above each
point should be though of as the space in which scalar functions evaluated at p takes its value.
Our regular notion of a function is thus only well-defined on an individual local trivialisation of a
bundle of appropriate dimension. We thus consider functions to be the local trivialisation of a global
coordinate-independent object called a section of the bundle.

3For those unfamiliar with the general pattern of differential geometry, often we are mapping small areas of manifolds
to flat space and then trying to pullback all the normal Euclidean calculus and geometry back through Φ
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Figure 2: Caption

Definition 5. Let (E,M, π) be a rank k vector bundle over M . A section of E, usually written
s ∈ Γ(E), is a map s : M → E such that π(s(p)) = p for all p ∈ M , i.e. a section maps only into
the fiber above a the point in question.

Just as local trivialisation of a manifold are related by transition functions, the local trivialisation
of bundles are also related by maps, consider the case of the clutching construction on S2 shown in
Figure 3.

Our complex scalar fields describing our quantum wavefunctions are thus going to be sections of
a rank 1 complex vector bundles, also known as a complex line bundle. Complex line bundles are
completely classified by the Chern number. We see that when quantising curved spaces we need to
choose the Chern number of the bundle in which our wavefunctions live. Complex lines over flat
phase space only have Chern number 0.

You could argue for making the choice to favour the trivial complex line bundle as the canonical
choice, but theory of Geometric Quantisation tells us that nontrivial bundles are actually better
to work with4. In fact, conditions on the curvature of the bundle containing the wavefunctions will
force us to consider nontrivial bundles all the time.

4 Cutting Down Phase Space: Polarised Wavefunctions

Pre to Full Quantization
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Figure 3: The clutching construction for a rank 2 real vector bundle (or rank 1 complex vector
bundle) over S2

[Woo92] Nicholas Michael John Woodhouse. Geometric quantization. Oxford university press, 1992.

[Got99] Mark J Gotay. “On the Groenewold–Van Hove problem for R 2n”. In: Journal of Mathe-
matical Physics 40.4 (1999), pp. 2107–2116.

[Hal13] Brian C Hall. Quantum theory for mathematicians. Springer, 2013.

8



Figure 4: Caption
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